For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

mechanisms-of-renal-repair | ATLAS-D2K Center
RBK Logo

Identifying Mechanisms of Renal Repair

Key Personnel

Andrew McMahon (PI)
University of Southern California

  • Andrew Ransick
    University of Southern California
  • Jing Liu
    University of Southern California

Project Description


An improved understanding of renal repair mechanisms, and their limits, may enable the development of approaches to lower renal burden. With this long-term goal in sight, we will apply approaches to identify the transcriptional signatures of reparative cell types in a mouse model of acute kidney injury to identify signatures that underlie effective and non-effective renal repair. We will employ FACS to isolate nuclei of replicating, reparative renal tubular cell types expressing a genetically activated green fluorescent protein restricted to nephron nuclei, and EDU-labeling to identify the replicating component of nephron nuclei post-ischemia reperfusion injury (IRI). Single nuclear transcriptional profiling (NUC-seq) will be performed in each model at 72hrs and 28days after IRI to provide new insights into the diversity of cellular responses associated with different stages and different outcomes to renal injury. Key predictions will be followed up by secondary molecular analysis of tissue sections by quantitative PCR, in situ hybridization and immunostaining. Further, findings will be related to human kidney transplant injury through the analysis of existing RNA-seq data from protocol biopsies. Together these studies aim to provide new insights into individual cell actions in injury and repair of the mammalian nephron.


  1. Conserved and Divergent Features of Human and Mouse Kidney Organogenesis.

    Lindström, NO; McMahon, JA; Guo, J; Tran, T; Guo, Q; Rutledge, E; Parvez, RK; Saribekyan, G; Schuler, RE; Liao, C; Kim, AD; Abdelhalim, A; Ruffins, SW; Thornton, ME; Basking, L; Grubbs, B; Kesselman, C; McMahon, AP. J Am Soc Nephrol . February 2018.

    Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database ( together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species.

  2. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney

    Lindström, NO; Guo, J; Kim, AD; Tran, T; Guo, Q; De Sena Brandine, G; Ransick, A; Parvez, RK; Thornton, ME; Basking, L; Grubbs, B; McMahon, JA; Smith, AD; McMahon, AP. J Am Soc Nephrol . February 2018.

    Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2+ nephron progenitor cells (NPCs) and Foxd1+ interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1, were readily detected within SIX2+ NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2+ NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2, are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs.

  3. Conserved and Divergent Molecular and Anatomic Features of Human and Mouse Nephron Patterning

    Lindström, NO; Tran, T; Guo, J; Rutledge, E; Parvez, RK; Thornton, ME; Grubbs, B; McMahon, JA; McMahon, AP. J Am Soc Nephrol . February 2018.

    The nephron is the functional unit of the kidney, but the mechanism of nephron formation during human development is unclear. We conducted a detailed analysis of nephron development in humans and mice by immunolabeling, and we compared human and mouse nephron patterning to describe conserved and divergent features. We created protein localization maps that highlight the emerging patterns along the proximal–distal axis of the developing nephron and benchmark expectations for localization of functionally important transcription factors, which revealed unanticipated cellular diversity. Moreover, we identified a novel nephron subdomain marked by Wnt4 expression that we fate-mapped to the proximal mature nephron. Significant conservation was observed between human and mouse patterning. We also determined the time at which markers for mature nephron cell types first emerge—critical data for the renal organoid field. These findings have conceptual implications for the evolutionary processes driving the diversity of mammalian organ systems. Furthermore, these findings provide practical insights beyond those gained with mouse and rat models that will guide in vitro efforts to harness the developmental programs necessary to build human kidney structures.

  4. Development of the Human Fetal Kidney from Mid to Late Gestation in Male and Female Infants

    Ryan, D; Sutherland, MR; Flores, TJ; Kent, AL; Dahlstrom, JE; Puelles, VG; Bertram, JF; McMahon, AP; Little, MH; Moore, L; Black, MJ. EBioMedicine . 27:275–283. January 2018.

    BACKGROUND: During normal human kidney development, nephrogenesis (the formation of nephrons) is complete by term birth, with the majority of nephrons formed late in gestation. The aim of this study was to morphologically examine nephrogenesis in fetal human kidneys from 20 to 41weeks of gestation. METHODS: Kidney samples were obtained at autopsy from 71 infants that died acutely in utero or within 24h after birth. Using image analysis, nephrogenic zone width, the number of glomerular generations, renal corpuscle cross-sectional area and the cellular composition of glomeruli were examined. Kidneys from female and male infants were analysed separately. FINDINGS: The number of glomerular generations formed within the fetal kidneys was directly proportional to gestational age, body weight and kidney weight, with variability between individuals in the ultimate number of generations (8 to 12) and in the timing of the cessation of nephrogenesis (still ongoing at 37weeks gestation in one infant). There was a slight but significant (r2=0.30, P=0.001) increase in renal corpuscle cross-sectional area from mid gestation to term in females, but this was not evident in males. The proportions of podocytes, endothelial and non-epithelial cells within mature glomeruli were stable throughout gestation. INTERPRETATION: These findings highlight spatial and temporal variability in nephrogenesis in the developing human kidney, whereas the relative cellular composition of glomeruli does not appear to be influenced by gestational age.

  5. An immunohistochemical identification key for cell types in adult mouse prostatic and urethral tissue sections

    Wegner, KA; Cadena, MT; Trevena, R; Turco, AE; Gottschalk, A; Halberg, RB; Guo, J; McMahon, JA; McMahon, AP; Vezina, CM. PLoS ONE . 12(11). November 2017.

  6. Differential regulation of mouse and human nephron progenitors by the Six family of transcriptional regulators.

    O’Brien, LL; Guo, Q; Lee, Y; Tran, T; Benazet, JD; Whitney, PH; Valouev, A; McMahon, AP. Development . 143(4):595–608. February 2016.

    Nephron endowment is determined by the self-renewal and induction of a nephron progenitor pool established at the onset of kidney development. In the mouse, the related transcriptional regulators Six1 and Six2 play non-overlapping roles in nephron progenitors. Transient Six1 activity prefigures, and is essential for, active nephrogenesis. By contrast, Six2 maintains later progenitor self-renewal from the onset of nephrogenesis. We compared the regulatory actions of Six2 in mouse and human nephron progenitors by chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq). Surprisingly, SIX1 was identified as a SIX2 target unique to the human nephron progenitors. Furthermore, RNA-seq and immunostaining revealed overlapping SIX1 and SIX2 activity in 16 week human fetal nephron progenitors. Comparative bioinformatic analysis of human SIX1 and SIX2 ChIP-seq showed each factor targeted a similar set of cis-regulatory modules binding an identical target recognition motif. In contrast to the mouse where Six2 binds its own enhancers but does not interact with DNA around Six1, both human SIX1 and SIX2 bind homologous SIX2 enhancers and putative enhancers positioned around SIX1. Transgenic analysis of a putative human SIX1 enhancer in the mouse revealed a transient, mouse-like, pre-nephrogenic, Six1 regulatory pattern. Together, these data demonstrate a divergence in SIX-factor regulation between mouse and human nephron progenitors. In the human, an auto/cross-regulatory loop drives continued SIX1 and SIX2 expression during active nephrogenesis. By contrast, the mouse establishes only an auto-regulatory Six2 loop. These data suggest differential SIX-factor regulation might have contributed to species differences in nephron progenitor programs such as the duration of nephrogenesis and the final nephron count.

  7. Development of the Mammalian Kidney

    McMahon, AP. Curr Top Dev Biol . 117:31–64. January 2016.

    The basic unit of kidney function is the nephron. In the mouse, around 14,000 nephrons form in a 10-day period extending into early neonatal life, while the human fetus forms the adult complement of nephrons in a 32-week period completed prior to birth. This review discusses our current understanding of mammalian nephrogenesis: the contributing cell types and the regulatory processes at play. A conceptual developmental framework has emerged for the mouse kidney. This framework is now guiding studies of human kidney development enabled in part by in vitro systems of pluripotent stem cell-seeded nephrogenesis. A near future goal will be to translate our developmental knowledge-base to the productive engineering of new kidney structures for regenerative medicine.

  8. Translational profiles of medullary myofibroblasts during kidney fibrosis.

    Grgic, Ivica; Krautzberger, A. Michaela; Hofmeister, Andreas; Lalli, Matthew; DiRocco, Derek P.; Fleig, Susanne V.; Liu, Jing; Duffield, Jeremy S.; McMahon, Andrew P.; Aronow, Bruce; Humphreys, Benjamin D.. J Am Soc Nephrol . 25(9):1979–1990. September 2014.

    Myofibroblasts secrete matrix during chronic injury, and their ablation ameliorates fibrosis. Development of new biomarkers and therapies for CKD will be aided by a detailed analysis of myofibroblast gene expression during the early stages of fibrosis. However, dissociating myofibroblasts from fibrotic kidney is challenging. We therefore adapted translational ribosome affinity purification (TRAP) to isolate and profile mRNA from myofibroblasts and their precursors during kidney fibrosis. We generated and characterized a transgenic mouse expressing an enhanced green fluorescent protein (eGFP)-tagged L10a ribosomal subunit protein under control of the collagen1alpha1 promoter. We developed a one-step procedure for isolation of polysomal RNA from collagen1alpha1-eGFPL10a mice subject to unilateral ureteral obstruction and analyzed and validated the resulting transcriptional profiles. Pathway analysis revealed strong gene signatures for cell proliferation, migration, and shape change. Numerous novel genes and candidate biomarkers were upregulated during fibrosis, specifically in myofibroblasts, and we validated these results by quantitative PCR, in situ, and Western blot analysis. This study provides a comprehensive analysis of early myofibroblast gene expression during kidney fibrosis and introduces a new technique for cell-specific polysomal mRNA isolation in kidney injury models that is suited for RNA-sequencing technologies.

  9. Cell-specific translational profiling in acute kidney injury.

    Liu, Jing; Krautzberger, A. Michaela; Sui, Shannan H.; Hofmann, Oliver M.; Chen, Ying; Baetscher, Manfred; Grgic, Ivica; Kumar, Sanjeev; Humphreys, Benjamin D.; Hide, Winston A.; McMahon, Andrew P.. J Clin Invest . 124(3):1242–1254. March 2014.

    Acute kidney injury (AKI) promotes an abrupt loss of kidney function that results in substantial morbidity and mortality. Considerable effort has gone toward identification of diagnostic biomarkers and analysis of AKI-associated molecular events; however, most studies have adopted organ-wide approaches and have not elucidated the interplay among different cell types involved in AKI pathophysiology. To better characterize AKI-associated molecular and cellular events, we developed a mouse line that enables the identification of translational profiles in specific cell types. This strategy relies on CRE recombinase-dependent activation of an EGFP-tagged L10a ribosomal protein subunit, which allows translating ribosome affinity purification (TRAP) of mRNA populations in CRE-expressing cells. Combining this mouse line with cell type-specific CRE-driver lines, we identified distinct cellular responses in an ischemia reperfusion injury (IRI) model of AKI. Twenty-four hours following IRI, distinct translational signatures were identified in the nephron, kidney interstitial cell populations, vascular endothelium, and macrophages/monocytes. Furthermore, TRAP captured known IRI-associated markers, validating this approach. Biological function annotation, canonical pathway analysis, and in situ analysis of identified response genes provided insight into cell-specific injury signatures. Our study provides a deep, cell-based view of early injury-associated molecular events in AKI and documents a versatile, genetic tool to monitor cell-specific and temporal-specific biological processes in disease modeling.

  10. Induction and patterning of the metanephric nephron

    O’Brien, LL; McMahon, AP. Semin Cell Dev Biol . 36:31–8. December 2014.

    The functional unit of the mammalian metanephric kidney is the nephron: a complex tubular structure dedicated to blood filtration and maintenance of several important physiological functions. Nephrons are assembled from a nephron-restricted pool of mesenchymal progenitors over an extensive developmental period that is completed prior to (human), or shortly after (mouse), birth. An appropriate balance in the expansion and commitment of nephron progenitors to nephron formation is essential for normal kidney function. Too few nephrons increase risk of kidney disease later in life while the failure of normal progenitor differentiation in Wilm’s tumor patients leads to massive growth of a nephroblast population often necessitating surgical removal of the kidney. An inductive process within the metanephric mesenchyme leads to the formation of a pretubular aggregate which transitions into an epithelial renal vesicle: the precursor for nephron assembly. Growth, morphogenesis and patterning transform this simple cyst-like structure into a highly elongated mature nephron with distinct cell types positioned along a proximal (glomerular) to distal (connecting segment) axis of functional organization. This review discusses our current understanding of the specification, maintenance and commitment of nephron progenitors, and the regulatory processes that transform the renal vesicle into a nephron.

  11. Defining the acute kidney injury and repair transcriptome

    Kumar, S; Liu, J; McMahon, AP. Semin Nephrol . 34(4):404–17. July 2014.

    The mammalian kidney has an intrinsic ability to repair after significant injury. However, this process is inefficient: patients are at high risk for the loss of kidney function in later life. No therapy exists to treat established acute kidney injury (AKI) per se: strategies to promote endogenous repair processes and retard associated fibrosis are a high priority. Whole-organ gene expression profiling has been used to identify repair responses initiated with AKI, and factors that may promote the transition from AKI to chronic kidney disease. Transcriptional profiling has shown molecular markers and potential regulatory pathways of renal repair. Activation of a few key developmental pathways has been reported during repair. Whether these are comparable networks with similar target genes with those in earlier nephrogenesis remains unclear. Altered microRNA profiles, persistent tubular injury responses, and distinct late inflammatory responses highlight continuing kidney pathology. Additional insights into injury and repair processes will be gained by study of the repair transcriptome and cell-specific translatome using high-resolution technologies such as RNA sequencing and translational profiling tailored to specific cellular compartments within the kidney. An enhanced understanding holds promise for both the identification of novel therapeutic targets and biomarker-based evaluation of the damage-repair process.

  12. Defining kidney biology to understand renal disease

    Little, MH; Brown, D.; Humphreys, BD; McMahon, AP; Miner, JH; Sands, JM; Weisz, OA; Mullins, C; Hoshizaki, D; Kidney Research National Dialogue, (KRND). Clin J Am Soc Nephrol . 9(4):809–11. April 2014.

    The Kidney Research National Dialogue represents a novel effort by the National Institute of Diabetes and Digestive and Kidney Diseases to solicit and prioritize research objectives from the renal research and clinical communities. The present commentary highlights selected scientific opportunities specific to the study of renal development, physiology, and cell biology. Describing such fundamental kidney biology serves as a necessary foundation for translational and clinical studies that will advance disease care and prevention. It is intended that these objectives foster and focus scientific efforts in these areas in the coming decade and beyond.

  13. Retinoid signaling in progenitors controls specification and regeneration of the urothelium

    Gandhi, D; Molotkov, A; Batourina, E; Schneider, K; Dan, H; Reiley, M; Laufer, E; Metzger, D; Liang, F; Liao, Y; Sun, TT; Aronow, B; Rosen, R; Mauney, J; Adam, R; Rosselot, C; Van Batavia, J; McMahon, AP; McMahon, J; Guo, JJ; Mendelsohn, C. Dev Cell . 26(5):469–482. September 2013.

    The urothelium is a multilayered epithelium that serves as a barrier between the urinary tract and blood, preventing the exchange of water and toxic substances. It consists of superficial cells specialized for synthesis and transport of uroplakins that assemble into a tough apical plaque, one or more layers of intermediate cells, and keratin 5-expressing basal cells (K5-BCs), which are considered to be progenitors in the urothelium and other specialized epithelia. Fate mapping, however, reveals that intermediate cells rather than K5-BCs are progenitors in the adult regenerating urothelium, that P cells, a transient population, are progenitors in the embryo, and that retinoids are critical in P cells and intermediate cells, respectively, for their specification during development and regeneration. These observations have important implications for tissue engineering and repair and, ultimately, may lead to treatments that prevent loss of the urothelial barrier, a major cause of voiding dysfunction and bladder pain syndrome.

  14. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks.

    Park, Joo-Seop; Ma, Wenxiu; O’Brien, Lori L.; Chung, Eunah; Guo, Jin-Jin; Cheng, Jr-Gang; Valerius, M. Todd; McMahon, Jill A.; Wong, Wing Hung; McMahon, Andrew P.. Dev Cell . 23(3):637–651. September 2012.

    A balance between Six2-dependent self-renewal and canonical Wnt signaling-directed commitment regulates mammalian nephrogenesis. Intersectional studies using chromatin immunoprecipitation and transcriptional profiling identified direct target genes shared by each pathway within nephron progenitors. Wnt4 and Fgf8 are essential for progenitor commitment; cis-regulatory modules flanking each gene are cobound by Six2 and beta-catenin and are dependent on conserved Lef/Tcf binding sites for activity. In vitro and in vivo analyses suggest that Six2 and Lef/Tcf factors form a regulatory complex that promotes progenitor maintenance while entry of beta-catenin into this complex promotes nephrogenesis. Alternative transcriptional responses associated with Six2 and beta-catenin cobinding events occur through non-Lef/Tcf DNA binding mechanisms, highlighting the regulatory complexity downstream of Wnt signaling in the developing mammalian kidney.

  15. A genome-wide screen to identify transcription factors expressed in pelvic Ganglia of the lower urinary tract

    Wiese, CB; Ireland, S; Fleming, NL; Yu, J; Valerius, MT; Georgas, K; Chiu, HS; Brennan, J; Armstrong, J; Little, MH; McMahon, AP; Southard-Smith, EM. Front Neurosci . 6:130. September 2012.

    Relative positions of neurons within mature murine pelvic ganglia based on expression of neurotransmitters have been described. However the spatial organization of developing innervation in the murine urogenital tract (UGT) and the gene networks that regulate specification and maturation of neurons within the pelvic ganglia of the lower urinary tract (LUT) are unknown. We used whole-mount immunohistochemistry and histochemical stains to localize neural elements in 15.5 days post coitus (dpc) fetal mice. To identify potential regulatory factors expressed in pelvic ganglia, we surveyed expression patterns for known or probable transcription factors (TF) annotated in the mouse genome by screening a whole-mount in situ hybridization library of fetal UGTs. Of the 155 genes detected in pelvic ganglia, 88 encode TFs based on the presence of predicted DNA-binding domains. Neural crest (NC)-derived progenitors within the LUT were labeled by Sox10, a well-known regulator of NC development. Genes identified were categorized based on patterns of restricted expression in pelvic ganglia, pelvic ganglia and urethral epithelium, or pelvic ganglia and urethral mesenchyme. Gene expression patterns and the distribution of Sox10+, Phox2b+, Hu+, and PGP9.5+ cells within developing ganglia suggest previously unrecognized regional segregation of Sox10+ progenitors and differentiating neurons in early development of pelvic ganglia. Reverse transcription-PCR of pelvic ganglia RNA from fetal and post-natal stages demonstrated that multiple TFs maintain post-natal expression, although Pax3 is extinguished before weaning. Our analysis identifies multiple potential regulatory genes including TFs that may participate in segregation of discrete lineages within pelvic ganglia. The genes identified here are attractive candidate disease genes that may now be further investigated for their roles in malformation syndromes or in LUT dysfunction.

  16. Identification of molecular compartments and genetic circuitry in the developing mammalian kidney

    Yu, J; Valerius, MT; Duah, M; Staser, K; Hansard, JK; Guo, JJ; McMahon, J; Vaughan, J; Faria, D; Georgas, K; Rumballe, B; Ren, Q; Krautzberger, AM; Junker, JP; Thiagarajan, RD; Machanick, P; Gray, PA; van Oudenaarden, A; Rowitch, DH; Stiles, CD; Ma, Q; Grimmond, SM; Bailey, TL; Little, MH; McMahon, AP. Development . 139(10):1863–73. May 2012.

    Lengthy developmental programs generate cell diversity within an organotypic framework, enabling the later physiological actions of each organ system. Cell identity, cell diversity and cell function are determined by cell type-specific transcriptional programs; consequently, transcriptional regulatory factors are useful markers of emerging cellular complexity, and their expression patterns provide insights into the regulatory mechanisms at play. We performed a comprehensive genome-scale in situ expression screen of 921 transcriptional regulators in the developing mammalian urogenital system. Focusing on the kidney, analysis of regional-specific expression patterns identified novel markers and cell types associated with development and patterning of the urinary system. Furthermore, promoter analysis of synexpressed genes predicts transcriptional control mechanisms that regulate cell differentiation. The annotated informational resource ( will facilitate functional analysis of the mammalian kidney and provides useful information for the generation of novel genetic tools to manipulate emerging cell populations.

  17. The GUDMAP database–an online resource for genitourinary research

    Harding, SD; Armit, C; Armstrong, J; Brennan, J; Cheng, Y; Haggarty, B; Houghton, D; Lloyd-MacGilp, S; Pi, X; Roochun, Y; Sharghi, M; Tindal, C; McMahon, AP; Gottesman, B; Little, MH; Georgas, K; Aronow, B; Potter, SS; Brunskill, EW; Southard-Smith, EM; Mendelsohn, C; Baldock, RA; Davies, JA; Davidson, D. Development . 138(13):2845–53. July 2011.

    The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is an international consortium working to generate gene expression data and transgenic mice. GUDMAP includes data from large-scale in situ hybridisation screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of the developing mouse genitourinary (GU) system. These expression data are annotated using a high-resolution anatomy ontology specific to the developing murine GU system. GUDMAP data are freely accessible at via easy-to-use interfaces. This curated, high-resolution dataset serves as a powerful resource for biologists, clinicians and bioinformaticians interested in the developing urogenital system. This paper gives examples of how the data have been used to address problems in developmental biology and provides a primer for those wishing to use the database in their own research.

  18. High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population

    Mugford, JW; Yu, J; Kobayashi, A; McMahon, AP. Dev Biol . 333(2):312–23. September 2009.

    The functional unit of the kidney is the nephron. During its organogenesis, the mammalian metanephric kidney generates thousands of nephrons over a protracted period of fetal life. All nephrons are derived from a population of self-renewing multi-potent progenitor cells, termed the cap mesenchyme. However, our understanding of the molecular and cellular mechanisms underlying nephron development is at an early stage. In order to identify factors involved in nephrogenesis, we performed a high-resolution, spatial profiling of a number of transcriptional regulators expressed within the cap mesenchyme and early developing nephron. Our results demonstrate novel, stereotypic, spatially defined cellular sub-domains within the cap mesenchyme, which may, in part, reflect induction of nephron precursors. These results suggest a hitherto unappreciated complexity of cell states that accompany the assembly of the metanephric kidney, likely reflecting diverse regulatory actions such as the maintenance and induction of nephron progenitors.

  19. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment.

    Georgas, K; Rumballe, B; Valerius, MT; Chiu, HS; Thiagarajan, RD; Lesieur, E; Aronow, B; Brunskill, EW; Combes, AN; Tang, D; Taylor, D; Grimmond, SM; Potter, SS; McMahon, AP; Little, MH. Dev Biol . 332(2):273–86. August 2009.

    While nephron formation is known to be initiated by a mesenchyme-to-epithelial transition of the cap mesenchyme to form a renal vesicle (RV), the subsequent patterning of the nephron and fusion with the ureteric component of the kidney to form a patent contiguous uriniferous tubule has not been fully characterized. Using dual section in situ hybridization (SISH)/immunohistochemistry (IHC) we have revealed distinct distal/proximal patterning of Notch, BMP and Wnt pathway components within the RV stage nephron. Quantitation of mitoses and Cyclin D1 expression indicated that cell proliferation was higher in the distal RV, reflecting the differential developmental programs of the proximal and distal populations. A small number of RV genes were also expressed in the early connecting segment of the nephron. Dual ISH/IHC combined with serial section immunofluorescence and 3D reconstruction revealed that fusion occurs between the late RV and adjacent ureteric tip via a process that involves loss of the intervening ureteric epithelial basement membrane and insertion of cells expressing RV markers into the ureteric tip. Using Six2-eGFPCre x R26R-lacZ mice, we demonstrate that these cells are derived from the cap mesenchyme and not the ureteric epithelium. Hence, both nephron patterning and patency are evident at the late renal vesicle stage.

  20. Atlas of gene expression in the developing kidney at microanatomic resolution

    Brunskill, EW; Aronow, B; Georgas, K; Rumballe, B; Valerius, MT; Aronow, B; Kaimal, V; Jegga, AG; Yu, J; Grimmond, SM; McMahon, AP; Patterson, LT; Little, MH; Potter, SS. Dev Cell . 15(5):781–91. November 2008.

    Kidney development is based on differential cell-type-specific expression of a vast number of genes. While multiple critical genes and pathways have been elucidated, a genome-wide analysis of gene expression within individual cellular and anatomic structures is lacking. Accomplishing this could provide significant new insights into fundamental developmental mechanisms such as mesenchymal-epithelial transition, inductive signaling, branching morphogenesis, and segmentation. We describe here a comprehensive gene expression atlas of the developing mouse kidney based on the isolation of each major compartment by either laser capture microdissection or fluorescence-activated cell sorting, followed by microarray profiling. The resulting data agree with known expression patterns and additional in situ hybridizations. This kidney atlas allows a comprehensive analysis of the progression of gene expression states during nephrogenesis, as well as discovery of potential growth factor-receptor interactions. In addition, the results provide deeper insight into the genetic regulatory mechanisms of kidney development.

  21. GUDMAP: the genitourinary developmental molecular anatomy project

    McMahon, AP; Aronow, B; Davidson, DR; Davies, JA; Gaido, KW; Grimmond, SM; Lessard, JL; Little, MH; Potter, SS; Wilder, EL; Zhang, P; GUDMAP, Project. J Am Soc Nephrol . 19(4):667–71. April 2008.

    In late 2004, an International Consortium of research groups were charged with the task of producing a high-quality molecular anatomy of the developing mammalian urogenital tract (UGT). Given the importance of these organ systems for human health and reproduction, the need for a systematic molecular and cellular description of their developmental programs was deemed a high priority. The information obtained through this initiative is anticipated to enable the highest level of basic and clinical research grounded on a 21st-century view of the developing anatomy. There are three components to the Genitourinary Developmental Molecular Anatomy Project GUDMAP; all of these are intended to provide resources that support research on the kidney and UGT. The first provides ontology of the cell types during UGT development and the molecular hallmarks of those cells as discerned by a variety of procedures, including in situ hybridization, transcriptional profiling, and immunostaining. The second generates novel mouse strains. In these strains, cell types of particular interest within an organ are labeled through the introduction of a specific marker into the context of a gene that exhibits appropriate cell type or structure-specific expression. In addition, the targeting construct enables genetic manipulation within the cell of interest in many of the strains. Finally, the information is annotated, collated, and promptly released at regular intervals, before publication, through a database that is accessed through a Web portal. Presented here is a brief overview of the Genitourinary Developmental Molecular Anatomy Project effort.

  22. A high-resolution anatomical ontology of the developing murine genitourinary tract

    Little, MH; Brennan, J; Georgas, K; Davies, JA; Davidson, DR; Baldock, RA; Beverdam, A; Bertram, JF; Capel, B; Chiu, HS; Clements, D; Cullen-McEwen, L; Fleming, J; Gilbert, T; Herzlinger, D; Houghton, D; Kaufman, MH; Kleymenova, E; Koopman, PA; Lewis, AG; McMahon, AP; Mendelsohn, C; Mitchell, EK; Rumballe, BA; Sweeney, DE; Valerius, MT; Yamada, G; Yang, Y; Yu, J. Gene Expr Patterns . 7(6):680–99. June 2007.

    Cataloguing gene expression during development of the genitourinary tract will increase our understanding not only of this process but also of congenital defects and disease affecting this organ system. We have developed a high-resolution ontology with which to describe the subcompartments of the developing murine genitourinary tract. This ontology incorporates what can be defined histologically and begins to encompass other structures and cell types already identified at the molecular level. The ontology is being used to annotate in situ hybridisation data generated as part of the Genitourinary Development Molecular Anatomy Project (GUDMAP), a publicly available data resource on gene and protein expression during genitourinary development. The GUDMAP ontology encompasses Theiler stage (TS) 17-27 of development as well as the sexually mature adult. It has been written as a partonomic, text-based, hierarchical ontology that, for the embryological stages, has been developed as a high-resolution expansion of the existing Edinburgh Mouse Atlas Project (EMAP) ontology. It also includes group terms for well-characterised structural and/or functional units comprising several sub-structures, such as the nephron and juxtaglomerular complex. Each term has been assigned a unique identification number. Synonyms have been used to improve the success of query searching and maintain wherever possible existing EMAP terms relating to this organ system. We describe here the principles and structure of the ontology and provide representative diagrammatic, histological, and whole mount and section RNA in situ hybridisation images to clarify the terms used within the ontology. Visual examples of how terms appear in different specimen types are also provided.

  23. Lineage Tracing and Single-Nucleus Multiomics Reveal Novel Features of Adaptive and Maladaptive Repair after Acute Kidney Injury

    Gerhardt, Louisa M.S.; Koppitch, Kari; van Gestel, Jordi; Guo, Jinjin; Cho, Sam; Wu, Haojia; Kirita, Yuhei; Humphreys, Benjamin D.; McMahon, Andrew P.. Journal of the American Society of Nephrology . Publish Ahead of Print. January 2023.

  24. Identifying Common Molecular Mechanisms in Experimental and Human Acute Kidney Injury

    Gerhardt, Louisa M.S.; McMahon, Andrew P.. Seminars in Nephrology . 2022.

    Summary Acute kidney injury (AKI) is a highly prevalent, heterogeneous syndrome, associated with increased short- and long-term mortality. A multitude of different factors cause AKI including ischemia, sepsis, nephrotoxic drugs, and urinary tract obstruction. Upon injury, the kidney initiates an intrinsic repair program that can result in adaptive repair with regeneration of damaged nephrons and functional recovery of epithelial activity, or maladaptive repair and persistence of damaged epithelial cells with a characteristic proinflammatory, profibrotic molecular signature. Maladaptive repair is linked to disease progression from AKI to chronic kidney disease. Despite extensive efforts, no therapeutic strategies provide consistent benefit to AKI patients. Since kidney biopsies are rarely performed in the acute injury phase in humans, most of our understanding of AKI pathophysiology is derived from preclinical AKI models. This raises the question of how well experimental models of AKI reflect the molecular and cellular mechanisms underlying human AKI? Here, we provide a brief overview of available AKI models, discuss their strengths and limitations, and consider important aspects of the AKI response in mice and humans, with a particular focus on the role of proximal tubule cells in adaptive and maladaptive repair.

  25. Kidney repair and regeneration: perspectives of the NIDDK (Re)Building a Kidney consortium

    Naved, Bilal A.; Bonventre, Joseph V.; Hubbell, Jeffrey A.; Hukriede, Neil A.; Humphreys, Benjamin D.; Kesselman, Carl; Valerius, M. Todd; McMahon, Andrew P.; Shankland, Stuart J.; Wertheim, Jason A.; White, Michael J.V.; de Caestecker, Mark P.; Drummond, Iain A. Kidney International . March 2022.

  26. Multi-omics integration in the age of million single-cell data

    Miao, Zhen; Humphreys, Benjamin D.; McMahon, Andrew P.; Kim, Junhyong. Nature Reviews Nephrology . 17(11):710–724. November 2021.

    An explosion in single-cell technologies has revealed a previously underappreciated heterogeneity of cell types and novel cell-state associations with sex, disease, development and other processes. Starting with transcriptome analyses, single-cell techniques have extended to multi-omics approaches and now enable the simultaneous measurement of data modalities and spatial cellular context. Data are now available for millions of cells, for whole-genome measurements and for multiple modalities. Although analyses of such multimodal datasets have the potential to provide new insights into biological processes that cannot be inferred with a single mode of assay, the integration of very large, complex, multimodal data into biological models and mechanisms represents a considerable challenge. An understanding of the principles of data integration and visualization methods is required to determine what methods are best applied to a particular single-cell dataset. Each class of method has advantages and pitfalls in terms of its ability to achieve various biological goals, including cell-type classification, regulatory network modelling and biological process inference. In choosing a data integration strategy, consideration must be given to whether the multi-omics data are matched (that is, measured on the same cell) or unmatched (that is, measured on different cells) and, more importantly, the overall modelling and visualization goals of the integrated analysis.

  27. Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury

    Gerhardt, Louisa M. S.; Liu, Jing; Koppitch, Kari; Cippà, Pietro E.; McMahon, Andrew P.. Proceedings of the National Academy of Sciences . 118(27). July 2021.

    A single acute kidney injury event increases the risk of progression to chronic kidney disease (CKD). Combining single-nucleus RNA sequencing with genetic tracing of injured proximal tubule cells identified a spatially dynamic, evolving injury response following ischemia–reperfusion injury. Failed proximal tubule repair leads to the persistence of a profibrotic, proinflammatory Vcam1+/Ccl2+ cell type exhibiting a senescence-associated secretory phenotype and a marked transcriptional activation of NF-κB and AP-1 pathway signatures, but no signs of G2/M cell cycle arrest. Insights from this study can inform strategies to improve renal repair and prevent CKD progression.Acute kidney injury (AKI), commonly caused by ischemia, sepsis, or nephrotoxic insult, is associated with increased mortality and a heightened risk of chronic kidney disease (CKD). AKI results in the dysfunction or death of proximal tubule cells (PTCs), triggering a poorly understood autologous cellular repair program. Defective repair associates with a long-term transition to CKD. We performed a mild-to-moderate ischemia–reperfusion injury (IRI) to model injury responses reflective of kidney injury in a variety of clinical settings, including kidney transplant surgery. Single-nucleus RNA sequencing of genetically labeled injured PTCs at 7-d (“early”) and 28-d (“late”) time points post-IRI identified specific gene and pathway activity in the injury–repair transition. In particular, we identified Vcam1+/Ccl2+ PTCs at a late injury stage distinguished by marked activation of NF-κB–, TNF-, and AP-1–signaling pathways. This population of PTCs showed features of a senescence-associated secretory phenotype but did not exhibit G2/M cell cycle arrest, distinct from other reports of maladaptive PTCs following kidney injury. Fate-mapping experiments identified spatially and temporally distinct origins for these cells. At the cortico-medullary boundary (CMB), where injury initiates, the majority of Vcam1+/Ccl2+ PTCs arose from early replicating PTCs. In contrast, in cortical regions, only a subset of Vcam1+/Ccl2+ PTCs could be traced to early repairing cells, suggesting late-arising sites of secondary PTC injury. Together, these data indicate even moderate IRI is associated with a lasting injury, which spreads from the CMB to cortical regions. Remaining failed-repair PTCs are likely triggers for chronic disease progression.The single-nuclei RNA sequencing data have been deposited in the Gene Expression Omnibus (GEO) database (accession no. GSE171417). All study data are included in the article and/or supporting information. Previously published data were used for this work (;

  28. In Vivo Developmental Trajectories of Human Podocyte Inform In Vitro Differentiation of Pluripotent Stem Cell-Derived Podocytes.

    Tran, Tracy; Lindstrom, Nils O.; Ransick, Andrew; De Sena Brandine, Guilherme; Guo, Qiuyu; Kim, Albert D.; Der, Balint; Peti-Peterdi, Janos; Smith, Andrew D.; Thornton, Matthew; Grubbs, Brendan; McMahon, Jill A.; McMahon, Andrew P. Dev Cell . 50(1):102–116.e6. July 2019.

    The renal corpuscle of the kidney comprises a glomerular vasculature embraced by podocytes and supported by mesangial myofibroblasts, which ensure plasma filtration at the podocyte-generated slit diaphragm. With a spectrum of podocyte-expressed gene mutations causing chronic disease, an enhanced understanding of podocyte development and function to create relevant in vitro podocyte models is a clinical imperative. To characterize podocyte development, scRNA-seq was performed on human fetal kidneys, identifying distinct transcriptional signatures accompanying the differentiation of functional podocytes from progenitors. Interestingly, organoid-generated podocytes exhibited highly similar, progressive transcriptional profiles despite an absence of the vasculature, although abnormal gene expression was pinpointed in late podocytes. On transplantation into mice, organoid-derived podocytes recruited the host vasculature and partially corrected transcriptional profiles. Thus, human podocyte development is mostly intrinsically regulated and vascular interactions refine maturation. These studies support the application of organoid-derived podocytes to model disease and to restore or replace normal kidney functions.

  29. Conserved and Divergent Features of Human and Mouse Kidney Organogenesis.

    Lindström, NO; McMahon, JA; Guo, J; Tran, T; Guo, Q; Rutledge, E; Parvez, RK; Saribekyan, G; Schuler, RE; Liao, C; Kim, AD; Abdelhalim, A; Ruffins, SW; Thornton, ME; Basking, L; Grubbs, B; Kesselman, C; McMahon, AP. J Am Soc Nephrol . February 2018.

    Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database ( together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species.

  30. (Re)Building a Kidney.

    Oxburgh, L; Carroll, TJ; Cleaver, O; Gossett, DR; Hoshizaki, DK; Hubbell, JA; Humphreys, BD; Jain, S; Jensen, J; Kaplan, DL; Kesselman, C; Ketchum, CJ; Little, MH; McMahon, AP; Shankland, SJ; Spence, JR; Valerius, MT; Wertheim, JA; Wessely, O; Zheng, Y; Drummond, IA. J Am Soc Nephrol . 28(5):1370–1378. May 2017.

    (Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses.